Barron’s SHSAT Prep Book

I’m excited to announce that the SHSAT Prep Book I co-authored for Barron’s has been published!

This book is designed to prepare middle school students for New York City’s Specialized High School Test (SHSAT). The SHSAT is the sole admissions criterion for entry into New York City’s specialized schools, which include Stuyvesant, Bronx Science, and Brooklyn Tech. The test is free, and every middle school student in the city is eligible to take it.

This new book reflects the recent changes to the content of the SHSAT, which was re-designed to better represent the standard 7th and 8th grade curricula. It includes an overview of all of the math and ELA content covered on the exam, as well as three complete practice tests.

The book was written with co-author Young Kim, and is currently available on Amazon and in Barnes and Noble stores in New York City.

Regents Recap — January, 2018: Problems with Pre-Calculus

Since the advent of the “Common Core” Regents exams in New York state, there has been a noticeable increase in decidedly Pre-Calculus content on the tests. Questions involving rates of change, piecewise functions, and relative extrema now routinely appear on the Algebra I and Algebra II exams. Unfortunately, these questions also routinely demonstrate a disturbing lack of content knowledge on the part of the exam creators.

Here’s number 36 from the January, 2018 Common Core Algebra I Regents exam.

This graph represents “the number of pairs of shoes sold each hour over a 14-hour time period” by an online shoe vendor. A simple enough start. But things start to get tricky halfway down the page, when the following directive is issued.

State the entire interval for which the number of shoes sold is increasing.

The answer must be 0 < t < 6, because that’s when the graph is increasing, right? The official rubric says so, and the Model Response Set backs it up (this Model Response has been edited to show only the portion currently under discussion).

But 0 < t < 6 is not the correct answer. Can you spot the wrinkle here? Basically, the number of shoes sold is always increasing.

The graph shown is a model of the number of shoes sold per hour. The model shows that, at any time between t = 0 and t = 14, a positive number of shoes are being sold per hour. In short, more shoes are always being sold. That means the number of shoes sold is always increasing. The correct answer is 0 < t < 14.

The exam creators have made a conceptual error familiar to any Calculus teacher: they are conflating a function and its rate of change.

In this problem, the directive pertains to the number of shoes sold. But the given graph shows the rate of change of the number of shoes sold. The given graph is indeed increasing for 0 < t < 6, but the question isn’t “When is the rate of change of shoes sold increasing?” The question is “When is the number of shoes sold increasing?” Since a function is increasing when its rate of change is positive, this means the number of shoes sold is increasing whenever the graph is positive. Thus, the answer is 0 < t < 14.

After the exam was given and graded, those in charge of the Regents exams became aware of the error. They quickly issued a correction, updated the rubric, and instructed schools to re-score the question (giving full credit for either 0 < < 6 or 0 < t < 14). Thankfully, it didn’t take a change.org campaign and national media attention for them to admit their error.

But as usual, they did their best to dodge responsibility.

In their official correction, the exam creators blamed the issue on imprecision in wording, pretending that this was just a misunderstanding, rather than an embarrassing mathematical error. This is something they’ve done over and over and over again. These aren’t typos, miscommunications, or inconsistencies in notation. These are serious, avoidable mathematical errors that call into question the validity of the very process by which these exams are constructed, graded, and, ultimately, used. We all deserve better.

Related Posts

 

Regents Recap — January 2018: Promoting Bad Habits

As an AP Calculus teacher, I looked upon number 30 on the January, 2018 Algebra 2 exam with great trepidation.

Functions are frequently given as tables in AP Calculus. This alternate representation of function helps create a numerical bridge between their formal and graphical representations, and it can also establish connections with data and statistics. If nothing else, the ability to represent and understand mathematical objects in different ways is incredibly powerful.

But it’s crucially important to understand that tables, by design, represent only a small sample of a function. Unless we have other information, there’s very little we can say about what the function does outside the table values. In particular, we have no reason to believe that the largest value in the table is the largest value the functions takes, either globally or locally: the function could do practically anything in between the given values. This is a common misconception among calculus students, and it takes consistent effort to correct it.

Thus, I was worried to see a Regents question asking about extreme values for a function given as a table. As it turns out, there’s nothing mathematically wrong with this particular question: the given trigonometric function is bounded between -1 and 3, so the fact that q(x) takes a value of -8 means it must take the smaller minimum value. However, it would be a mistake to claim that the minimum value of q(x) is -8, as the function could potentially drop below -8 between any pair of given values on that interval.

So it’s disheartening to see student work that makes this exact claim labelled as “complete and correct”.

I think this is a fairly reasonable answer for an Algebra 2 student. And I don’t entirely blame them for not fully understanding the subtleties of the correct argument: that the minimum value of q(x) must be less than or equal to -8, which is less than the minimum value of h(x), and therefore q(x) must have the smaller minimum value.

But I do blame the test makers for not fully understanding the subtleties of the correct argument. And I blame them for writing yet another test question that promotes bad mathematical habits, by expecting and rewarding an incomplete answer, and setting students up for deeper misconceptions later on down the line.

Related Posts

 

Regents Recap — January 2018: Isn’t this Algebra?

What constitutes an algebraic solution? Let’s find out.

Here’s number 37 from the January, 2018 Common Core Algebra Regents exam. Only the final part of this six-point question is presented: Determine algebraically the number of cats and the number of dogs Bea initially had in her pet shop.

The key phrase here, apparently, is determine algebraically. If you don’t determine the answer algebraically, you can’t receive full credit. Here’s an example from the official Model Response Set in which the student loses a point for using “a method other than algebraic to solve the problem”.

In this solution, the student manipulates multiple equations, proportions, and equivalencies, determines the values of the variables that made the equations simultaneously true, and then applies substitution to verify their correct answer. That sure sounds like an algebraic solution to me.

Apparently it wasn’t the algebraic solution the test makers were looking for. But so what? We should be rewarding students for applying tools and techniques flexibly, not penalizing them for failing to adhere to a narrow, and secret, definition of what mathematics is.

Related Posts

 

Regents Recap — January 2018: How Do You Explain That 2 + 3 = 5?

This has quickly become my new least-favorite kind of Regents exam question. (This is number 32 from the January, 2018 Algebra 2 Regents exam.)

What can you say here, really? They’re equal because they’re the same number. Here’s a solid mathematical explanation. Right?

Wrong.

According to those who write the scoring guidelines for these exams, this is a justification, not an explanation. Because students were asked to explain, not justify, this earns only half credit.

This is absurd. First of all, this is a perfectly reasonable explanation of why these two numbers are equal. This logical string of equalities explains it all. This clear mathematical argument demonstrates what it means to raise something to the power 3/4.

Second, whatever it is that differentiates an “explanation” from a “justification” in the minds of Regents exams writers, it’s never been made clear to test-takers or the teachers who prepare them. A working theory among some teachers is that “explain” just means “use words”. Setting aside how ridiculous this is, if this is the standard to meet, students and teachers need to be aware of it. It needs to be clearly communicated in testing and curricular materials. It isn’t.

Third, take a look at what the the test-makers consider a “complete and correct response”.

In this full-credit response, the student demonstrates a shaky mathematical understanding of the situation (why are they using logarithms?) and writes a statement (“81 with four roots gives you 3”) that, while on the right track, is in need of substantial mathematical refinement. Declaring this to be a superior response to the valid mathematical argument above is an embarrassment.

These tests are at their worst when they encourage and propagate poor mathematical behavior. We deserve more from our high-stakes exams.

Related Posts

Follow

Get every new post delivered to your Inbox

Join other followers: