Building the Profession of Math Teachers

msri national math festivalThis past week I traveled to Washington, D.C., to speak at a policy briefing sponsored by the Mathematical Sciences Research Institute.  The briefing was part of a policy day held in advance of MSRI’s first ever National Math Festival.

The theme of the briefing was “Building the Profession of Math Teachers in America”.  I was invited to give a teacher’s perspective on professional development, and to talk about what successful programs look like to teachers and the impact they have on classrooms and schools.

I spoke about the influence that programs like Math for America and PCMI have had on me, my colleagues and, in turn, our school.  These programs inspire and empower teachers, and help create an environment where teachers are more willing and able to take on the challenges that schools and districts face.

Here’s an excerpt from the closing of my speech.

I’ve been teaching for a long time.  I’ve seen new curricula, new standards, and new tests come, go, and come again.  And I know that the reality of policy-making is inextricably tied to these things.

But these things don’t really lead to the kind of authentic, sustainable change that comes from empowering teachers.  I have experienced this personally, I am witnessing it right now in my school, and through digital communities, I see it happening all over the country.

I was honored to represent teachers and talk about the positive impact these programs have had on me and my school.  But I was definitely nervous following speakers like Nancy Pelosi, Harry Reid, Al Franken, and many other politicians and policy makers!  Hopefully, my message resonated with those in attendance, and I’m thankful to the MSRI for giving me the opportunity to contribute to the conversation.

Regents Recap — January 2015: Admitting Mistakes

Here is another installment in my series reviewing the NY State Regents exams in mathematics.

This is question 27 from the Geometry exam.

January 2015 GEO 27This question has two correct answers:  it is possible to map AB onto A’B’ using a glide reflection or a rotation.  The original answer key indicated that (4) glide reflection was the correct answer.  After the exam was administered, the state Department of Education issued a correction and told scorers to award full credit for both (2) and (4).

Mistakes happen, even on important exams that many people work hard to produce.  But when mistakes are made, those responsible should accept responsibility, not equivocate.

Here’s the official correction from the state.

January 2015 GEO 27 -- Correction

It’s hard to accept that the issue here was a lack of specificity in the wording of the question.  The issue is that someone wrote a question without fully thinking through the mathematics, and then those tasked with checking the problem also failed to fully think through the mathematics.  This isn’t a failure in communication; this is a failure in management and oversight.

And it has happened before.  This example is particularly troubling, in which those responsible for producing these exams try to pretend that an egregious mathematical error is really just a lack of agreement about notation.  Sometimes errors are just erased from the record with little or no explanation, and then, of course, there are the many mistakes that are never even acknowledged.

Mistakes are bound to happen.  But by pretending that substantial errors are just misunderstandings, differences of opinion, or typos, the credibility of those responsible for these high-stakes exams suffers even further damage.

Regents Recap — January 2015: It’s True Because It’s True

Here is another installment in my series reviewing the NY State Regents exams in mathematics.

This is question 25 from the Common Core Algebra exam.

January 2015 CC A 25

I’ve already complained about the contrived, artificial contexts for these questions (why not just ask “Is the sum of these two numbers rational or irrational?”), so I’ll ignore that for now.  What’s worth discussing here is the following sample student response provided by the state.

January 2015 CC A 25 -- Sample Response

So, why is the sum of a rational number and an irrational number irrational?  Because the sum of a rational number and an irrational number is always irrational.  This circular argument is offered as an example of a complete and correct response.

I’m not sure there’s a way to rewrite this question so that it admits a sensible answer.  That’s probably a good indication that it shouldn’t be on a high-stakes test.

As I’ve argued time and again, questions on these exams should stand as examples of proper mathematics.  But questions like this actually encourage bad habits in students, and teachers too, who are being told that this constitutes an appropriate response to this question.  This is yet another example of the danger of simply tacking on “Justify your reasoning” to a high-stakes exam question.

Related Posts

Regents Recap — January 2015: Not Even Pseudo-Context

Here is another installment in my series reviewing the NY State Regents exams in mathematics.

This is question 8 from the Integrated Algebra exam.

January 2015 IA 8Four students are playing a math game at home.  One of the math game questions asked them to write an algebraic equation.

The context of this question is utterly absurd  The question might as well have been

“Four students are taking a math test.  One of the questions asked them to write an algebraic equation.  Which student answered the test question correctly?”

Why not just ask “Which of the following is an example of an algebraic equation?”.  Maybe there are people who believe that framing questions as games, or humanizing them, will engage test-takers more, but it’s hard to believe that contrivances like this do anything but further separate students from the concepts they purport to assess.  This is another example of the negative impact these poorly-designed tests can have on students, which I discuss at length in my talk “g=4, and Other Lies the Test Told Me“.

Math teachers are familiar with the notion of pseudo-contextbut I’m not sure what I would call this.  Meta-pseudo-context?  Pseudo-meta-context?  Pseudo-pseudo-context?  Ridiculous, at the very least.

Related Posts

 

Pinscreen Approximations

I’ve always enjoyed playing around with pinscreens, but only recently did I realize what cool mathematical concepts they display!

Pinscreen Approximation

For example, the image above shows an approximation of the volume of a hemisphere using right cylinders.  A pinscreen Riemann sum!

And the images below suggest how we might approximate the areas of a circle and a square using pinscreens.

pinscreen circle

pinscreen square

Compute the ratio of raised pins to total pins, and multiply by the total area of the pinscreen.  A pinscreen Monte Carlo method!

Any other cool math hiding in there?

 

 

Follow

Get every new post delivered to your Inbox

Join other followers: