CD Packing Problems

Published by patrick honner on

I consider myself an expert arranger of things.  I enjoy rearranging storage space, packing things away, and helping people fill up moving trucks.  It’s a way to apply geometry and optimization techniques, two of my favorite things.

In general, the packing problem entails trying to find the most efficient way to pack a certain kind (or kinds) of object into a certain fixed space.  Packing problems are, generally speaking, very challenging because every packing problem is unique.  There isn’t a good, efficient procedure that solves them all.

Here is yet another example of problems with packing problems.  After shedding a bunch of CD cases, I thought I’d try to pack them up in a box.  Here was my first attempt.


I got 49 CDs in the box, but there was a bit of unused space left over.  I couldn’t fit a CD into that unused space, but I thought maybe I could rearrange everything to make some of that space usable.

So I tried

The number of CDs in this new arrangement differed by one.  While I can compare which of these packings is more efficient, the problem is comparing all possible packings!  There are a lot of options to consider.

As useless as they are, I ended up having a lot of fun with these CD cases.  I made some parallelepipeds with them and used them to demonstrate Cavalieri’s Principle!

Related Posts


patrick honner

Math teacher in Brooklyn, New York


Leave a Reply

Your email address will not be published. Required fields are marked *


Get every new post delivered to your Inbox

Join other followers: