Math Photo: Lego-Linear Approximations

This replica of The Thinker at Legoland got me thinking about linear approximations.

One of the fundamental ideas in Calculus is that certain kinds of curves can be very closely approximated by straight lines. In fact, when examined closely enough, these differentiable curves are essentially indistinguishable from straight lines. This is important because lines are easy to understand and analyze, whereas curves can be very complicated.

We see this phenomenon at play in Lego sculpture. Here, The Thinker’s curves are being approximated by rectangular Legos, and beautifully so. And scale plays an important role: a larger Thinker looks better in Lego than a smaller one, because the finer the approximation, the better the fit. This is something that any child who has ever tried to make a Thinker out of handful of Legos knows this firsthand.

Related Posts

 

Math Photo: Spiky Symmetry

These cacti caught my. I can see both a dodecagon and a star in the 12-fold symmetry of the cactus in front. And to my surprise, the cactus behind it has thirteen sections!

I wonder about the range, and deviation, of the number of sections of these cacti. And what are the biological principles that govern these mathematical characteristics?

Follow

Get every new post delivered to your Inbox

Join other followers: