Question 1 (25 minutes)

The graph of $g(x)$ for $-6 \leq x \leq 8$ is shown above, which for $-2 \leq x \leq 0$ is part of the circle centered at $(-2,0)$. Let $f(x)=\int_{0}^{x} g(t) d t$.
(a) Find the average rate of change of $g(x)$ on $[-6,8]$.
(b) $f(0)=0$. Does there exist another value of x on $-6 \leq x \leq 8$ such that $f(x)=0$? Justify your response.
(c) Determine all intervals on which $f(x)$ is concave down.
(d) Find the maximum value of $f(x)$ on $[-6,8]$.Justify your response.
(e) Write the second-degree Taylor polynomial for $f(x)$ centered at $x=4$.

Question 2 (15 minutes)

The functions $f(x)$ and $f^{\prime}(x)$ are defined on $1 \leq x \leq 4$ and $\left|f^{\prime}(x)\right| \leq 4$ for $1 \leq x \leq 4$.

x	1	1.5	2	2.5	3	3.5	4
$f(x)$	6.2	5.0	4.6	4.8	5.2	5.8	6.8
$f^{\prime}(x)$	-2.0	-1.2	0.5	0.8	1.2	2.4	1.8

(a) Estimate the value of $f^{\prime \prime}(2.5)$.
(b) Use a left-endpoint Riemann sum with three equal subinterval to estimate the average value of $f(x)$ on $1 \leq x \leq 4$.
(c) Explain why $f(2.25)<6$.
(d) The region bounded by the function $y=f(x)$ and the x-axis for $1 \leq x \leq 4$ is revolved about the line $y=10$. Set up an integral expression involving $f(x)$ for the volume of the resulting solid of revolution.

