Question 1 (25 minutes)

For a function $f(x)$ it is known that $f(0)=7, f^{\prime \prime}(x)$ is continuous, and $f^{\prime \prime}(x)<0$ for $0 \leq x \leq 6$. Select values of the first and second derivatives of $f(x)$ are given in the table below.

x	0	1	2	3	4	5	6
$f^{\prime}(x)$	5	4	3	1	-1	-1.5	-3
$f^{\prime \prime}(x)$	-3	-2	-5	-2	-1	-3	-6

(a) Using Euler's method and two steps of equal size, estimate $f(6)$ from the value of $f(0)$.
(b) Use the table of values and a trapezoidal sum using three equal subintervals to estimate $f(6)$.
(c) Explain why $f(x)$ must take a relative maximum on the interval $(0,6)$.
(d) Let $g(x)=f(3 x)$. Write the second-degree Taylor polynomial for $g(x)$ centered at $x=0$.

Question 2 (15 minutes)

The rate of cars entering a parking lot, measured in cars per hour, is modeled by the function $f(t)=50\left(\sqrt{t}+2 \cos \left(\frac{1}{7} t^{2}\right)\right)$, where $0 \leq t \leq 8$ is the time, in hours, after 12 noon ($t=0$ is noon). At $t=0$ the parking lot is empty.
(a) Compute $f^{\prime}(3)$ and provide the appropriate units. Interpret the meaning of the answer in the context of the problem.
(b) How many cars enter the parking lot from noon to 8 pm ? Give your answer to the nearest car.
(c) How many cars are in the lot when the rate at which cars are entering is at a minimum for $0 \leq t \leq 8$? Give your answer to nearest car.
(d) The parking lot uses a dynamic pricing system, charging $10-t$ dollars to enter before 5 pm , and $\$ 5$ to enter after 5 pm . To the nearest dollar, how much money is collected from $t=0$ to $t=8$?

